Algorithm for Accurate Control
of Low-Cost Joint-Based
Robots

A PROJECT IN INDUSTRIAL ENGINEERING AND COMPUTER SCIENCE

Massachusetts Middle School Science & Engineering Fair 2017

Siroun Johnson

Amigos K-8 School
Cambridge, MA

Accurate Control of Joint-Based Robots

Table of Contents

Introduction
Robotic Arms
The Field of Robotics
Joints
Optimization
Hypothesis
Goals
Materials
Procedure
Changes Made
Pilot Testing Process
Field Testing Process
depth
delta _d
pick_up
forward
s
delta_s
angle

adx

0 N o + M oW OO W

T N N S N G G G
® 0 o0 N N O o o o0 w o o©

Accurate Control of Joint-Based Robots

Results
Python Algorithm
Important Variables to Optimize
Quantitative Grading of Drawings
Results of Optimization
How the Code Works
__init__
wait
get_speed
home
distance
get_time
get_depth
move_to point
draw
Next Steps
Conclusions
Acknowledgments

References

19
19
19
20
21
22
22
22
23
23
23
23
23
24
24
25
26
27
28

‘Though further
developments might
nable people with

tetraplegia to
achieve rapid,
dexterous actions

under neural control,

at present, for
people who have no
or limited volitional
movement of their
own arm, even the
basic reach and
grasp actions
demonstrated here
could be
substantially
liberating, restoring
the ability to eat and
drink
independently.”

Hochberg et al.
2012 in Nature

Accurate Control of Joint-Based Robots

Introduction

Robotic Arms

Robotic arms are very expensive. Computer-integrated manufacturing systems have been
used in many industries for more than four decades (Taylor et al. 2009). Medical robotic arms
that aid in surgery use pneumatic actuators, meaning that their actions are controlled by
compressed air. Human-friendly robots use joint-based technology, where the joints, also called
DOFs are controlled by servos (Jeong et al. 2001). For example, a human arm exoskeleton
requires seven joints, so it is 7 DOF. Computer-integrated surgery uses robot technologies
(Taylor et al. 2009). Robotic arms are also made for other purposes, such as helping people
with tetraplegia, which is a type of paralysis caused by spinal cord injury, brainstem stroke, or
other ways of disconnecting the brain from the body. Robotic arms have been designed for
people with tetraplegia, giving these people the ability to reach and grasp (Hochberg et al.
2012). Robotic arms that are being made to aid with tetraplegia are not controlled by
compressed air. However, controlling movements precisely is relevant to these robotic arms as

well. Any kind of robotic arm must have very highly controlled movements.

The Field of Robotics

There are entire research journals that publish work about improving the accuracy and
repeatability of robot motion. For example, the International Journal of Robotics Research has
been publishing research for two decades on quality, cost, and studies of how to improve
quality at lower costs. According to the Springer Handbook of Robotics (Siciliano, Bruno, and
Oussama Khatib 2016), the foundations of the field of robotics are kinematics, dynamics,
mechanisms and actuation, sensing and actuation, motion planning, motion control, and force
control. Kinematics is about figuring out how to describe the location of a robot using
coordinates in space. Dynamics is about describing the motion of a robot. Mechanisms and
actuation is about how to make a robot move. Sensing and actuation is about detecting where
a robot is and how to move in response to this information. Motion planning is how to generate

Accurate Control of Joint-Based Robots

a trajectory of motion. Motion control is about communicating information from the software to
the hardware of the robot. Force control is about about making sure that the robot does not
violate any constraints. For example, if the robot is supposed to hold an egg, it should only
apply a certain amount of force so as to not break the egg. All of these are involved in building
a robotic arm.

Joints

Controlling a robotic arm means controlling its joints. In order to control a joint, it is necessary
to command a joint to move by a particular angle. The angle is determined from comparing
where the robot is currently to where the robot should be at the end of the movement.
Calculating the angle requires inverse kinematics. To plan the dynamics of the robotic arm
motion, variables have to be defined. Certain lengths are important to specify, and an endpoint
is necessary as well. The motion of each joint must be individually specified and controlled.
Specifying this depends on how precisely the servos can be controlled. Inexpensive servos,
such as the ones used in joints in this project, are less precise than more expensive ones.
Making the joints move requires writing a computer algorithm that controls the servos. The
algorithm tells the servos how many degrees to turn and what direction. The degrees are
calculated from the inverse kinematics. A subroutine in the algorithm does the inverse
kinematic calculations. Inexpensive servos do not provide much sensing capability, but some
errors can be programmed, such as detecting when invalid information is sent to the servo.
Motion planning involves lots of trial and error in defining variables and testing them to find out
which variables are useful and what are the best combinations. Controlling the motion of the
servos meant issuing commands from the computer to the Polulu to the servos. To check that it
goes through, it is necessary to run tests to obtain information from the servos back through
the same route. Therefore, it is necessary to code a subroutine that gets all the positions of the
servos. In a robotic arm, force control is mostly about how fast the servos are moved. Variables

can be defined to control these.

Optimization

A single motor in a pneumatic-controlled robot can cost between $2,000 and $5,000, and there

Accurate Control of Joint-Based Robots

are several motors per robot, making the total expense of industrial and medical robots very
high. This makes them very accurate, but the price is prohibitive. Accuracy and repeatability
are the two most important features of quality in a robot. This project presents an innovation to
program an algorithm to control an inexpensive robot very accurately with repeatable
outcomes. The joints in the robot that was designed for this project are controlled by servos,
which cost about $15 each. The entire robotic arm that was built for this project costs around
$130. The problem investigated was one of industrial engineering, using computer science to
optimize the design. The optimization involved improving how well the robotic arm could draw,
so that there would be a way of measuring accuracy. To do this, it was necessary to select the
most impactful variables and test them in various combinations (24 combinations of variable
values in the first phase of testing, and 80 combinations in the second phase). Then, code was
created to grade pictures taken of images drawn by the robot at each combination of variable
values. Once all the pictures were graded using that code, the gradings were used to find the

optimal variable values.

Accurate Control of Joint-Based Robots

Hypothesis

It is possible to design an accurate and simple control system for an inexpensive 4 DOF (four

degrees of freedom) robotic arm. This requires:

% Designing and building an inexpensive robot with four servos

< Specifying the inverse kinematics for robotic arm control

< Developing code to control and coordinate the joints

% Experimenting with different control parameters that can be optimized
< Creating algorithms to compare accuracy

< ldentifying the most accurate combinations of parameters

« Interpreting why those combinations are most accurate

« Explaining how the code works to control the robot

Accurate Control of Joint-Based Robots

Goals

< One way to improve future robot designs is to make accurate robots inexpensively. An

‘It is strange that , , , , , .
o - inexpensive robot has to first be designed and built before code can be optimized to
only extraordinary .
control how it works.
mean make the

2
°

Drawing is a very detailed and complex process. Drawing pictures is used so that

discoveries, which : :
ISCOVENCs, Wil accuracy can be measured, in order to solve the problem of having accurate control

later appear so easy and repeatable outcomes. Another goal is to create a simple algorithm to draw detailed
and simple.” pictures.

< Once the algorithm functions, it can be optimized to produce accurate images with
Georg C. repeatable outcomes. To obtain these images, it is necessary to design a method for
Lichtenberg measuring accuracy.

(1742-1799)

Accurate Control of Joint-Based Robots

Materials

One of the goals of this project is to have the total cost relatively low. In the list below, the total
cost is $124.25.

ltem Robotic arm materials Quantity Price ($)
1 Polulu mini maestro 18-channel USB servo controller 1 $39.95
2 USB 2.0 cable - A-male to mini-B - 3 feet 1 $4.20
3 VIMVIP 30cm male-to-female servo extension lead wires 1 $8.59
(12-pack)
4 DF Metal Geared 15kg standard servo 270° 3 $43.50
5 Goteck Micro metal gear servo 1 $6.90
6 AA batteries 4 $3.77
7 Tactic 4-cell AA battery holder with Fut-J connector 1 $3.88
8 McMaster cast acrylic sheet (plastic for 2D laser printer) 1 $13.46

Accurate Control of Joint-Based Robots

Procedure

Preliminary Research

Review designs of robotic arms.

Decide on configuration for robotic arm.

Solve forward and inverse kinematic equations for controlling servos with code.
Create the physical structure of the robotic arm from the materials.

ok~ wbn -

Obtain basic Python subroutines for communicating with servo controllers, and also for
converting images to points.

Experimental Phase

Write an initial outline for Python code that will make the robotic arm draw.
Get the first algorithm to work, with a lot of debugging!

Select a complex SVG image.

Design measures of accuracy and detail.

ok w0~

Invent and tweak various parameters in the algorithm to find a combination that works
best.
6. Continue to improve overall algorithm.

Accurate Control of Joint-Based Robots

Changes Made

DATE OF
EXPERIMENT FOCUS OF CHANGE OUTCOME
While making the eyes of a smiley face (for practice), it was difficult to
deoth parameter draw. A global depth parameter was defined to consolidate coding for a
1/20/2017 deﬁnitizn z-coordinate so that it could be used by a variety of functions. Depth
controls the z-coordinate and therefore how faint or dark the line is. For
now, determined that: Depth = -7.45 is the optimum.
1/25/2017 Timing Mak.mg the robot move faster made the lines more accurate by being
straighter.
1/27/2017 Organization Changing thg functions into a class (colllectlon of functions) made the
program easier to use and more organized.
There is a region that, if the robot arm is in contact with it, some of the
servos will burn out, so it was necessary to determine where to draw the
Protecting from image so the robot does not go into that region.
1/27/2017 . . - .
self-destruction 1 inch = 96 pixels

2.45cm =1 inch
So, 1 cm = 96/2.54 pixels = ~38 pixels

Previously, to draw two lines, it was necessary to have 13 lines of code.
This change involved using the code that changed an SVG file into a
1/28/2017 Efficiency collection of points, and the function called move_to_point, together to
create the drawing. Now, there is one function that puts this all together
in a FOR loop and some IF clauses.

NaN = not a number

Whenever it is necessary to pick up the pencil, it is represented in the
1/29/2017 Picking up the pencil collection of points as a NaN. If the program gets to a NaN, it should go
up, go over, and then go down. This change enabled picking up the
pencil whenever the input was a NaN.

10

Accurate Control of Joint-Based Robots

Optimizing the drawing

The author drew a 10 cm line, and it took 1.26 seconds. So the speed

2/3/2017 speed was 7.9 cm/s. The robot was then programmed to draw at the same
speed.
Up until now, accuracy was determined by looking at the drawing to see
2/9/2017 Measuring accuracy if it seemed more accurate. A simple square was converted to SVG so
that it would be possible to compare the quality of drawing a right angle.
Optimizing the depth Determined that having more than one paper underneath the robot, it is
2/9/2017 .
coordinate necessary to change the depth parameter.
2/9/2017 Neater drawing When the screws on the robot are tightened, the drawing is less messy.
It was discovered that the drawing was being made as a mirror image, so
2/10/2017 Mirror image drawing the y coordinate was switched to the opposite sign by multiplying it by -1
to fix this. Now the robot can write!
depth
1 = higher, lighter, might not draw
4 = lower, darker, might break
pick_up
4 = go higher, make sure it doesn't hit paper, can be inefficient
4 = lower, can be faster, can accidentally draw
forward
1 = farther away, can be shaky, less accurate but if it's too high then
Benefits and tradeoffs of the range of function is reduced
2/11/2017 4 = closer, can run into itself, range of motion is lower but if it's too
parameters Co
low then the range of motion is less
S
1 = faster, less accurate, good for curves, but slams down on the
paper if too fast
4 = slower, better for straight lines
dx
1 = less accurate, less points, less coordination, faster
4 = more accurate, more points, more coordination, but takes longer
the smaller it is
Optimizing range of A function was written to check if distance from tip of pencil to origin is
2/12/2017 greater than a specified value. If the distance is close, then the pencil is

motion

angled toward the robot base (225°), and if it is farther, the pencil is

11

Accurate Control of Joint-Based Robots

angled away from the base (135°). This would give more range of
motion. A problem was discovered: the servo controlling the angle that
the pencil contacts the paper has a maximum of 180°, so this
modification is not possible.

The farther away the tip of the pencil is from the robot base, the faster
the robot can draw. The closer, the slower it draws.

h = length of the paper perpendicular from the base of the robot

s = drawing speed

2/12/2017 Smoothness of line forward = amount that paper is moved forward from the base of the robot
max s = maximum speed

min $ = minimum speed

§ = S (x — forward) + min s

The optimum speed is given by s in the equation.

Determined how to calculate the distance from the origin to a point in 3
dimensions, using the initial and final x, y, and z coordinates of two
points (this is the Pythagorean theorem in 3 dimensions), in this case, x,
=Y.=2,=0:
imizi 2 2 2
2114/2017 Optimizing the angle of d= \/(xl) 5y~ v, (2~ 2)
the pencil . o
So, the simplified version is:
=)+)+)’

Once this distance is determined, the robot can be told to orient the
pencil at a particular angle that depends on the distance.

12

Accurate Control of Joint-Based Robots

13

Pilot Testing Process

The optimal values for the parameters were determined using multiple tests. After building the set of variables,
two figures (converted SVG files) were selected based on diverse properties. One was a square (with straight
lines) and the other was a cat (with mostly curved lines). Values of the parameters that were estimated as
making reasonable drawings were established as the middle values, and then one value less and one value
more than this were chosen for each variable, so that three values could be tested for each variable. The
intervals were not always equal because the goal was to test the entire range of values that could work. Then,
for each figure, drawings were made, using each of the three values of a parameter. These were labeled A, B
and C. Four people then rated each of the three drawings from best (1) to worst (3), and these ratings were

averaged.

Optimization of the variables was calculated by a weighted average so that the robot would be accurate with
both straight lines and curves (Phase 10). Based on examination of a variety of drawings, it was determined
that most drawings have 90% curves and 10% lines, thus these weightings were used to determine the optimal

values.

An example of how averages were determined is shown in the table below.

depth line rating curve rating
-7.2 2.75 1.75
-7.5 1.75 1.25
-8.0 1.50 3.00

Accurate Control of Joint-Based Robots

The pilot testing phase provided the following initial set of optimal variable values.

Variable Optimal Value Variable Optimal Value
depth -7.5 s 15

delta_d 1.0 delta_s 2.5

pick_up 1.45 angle 160

forward 10 dx 3.0

Below are shown drawings made by the robot, with non-optimal and optimal values of the variables. These are
compared to the original SVG image input to the program.

Early values of SVG of cat that was

parameters parameters input

Optimal values of

14

Accurate Control of Joint-Based Robots

Field Testing Process

Following the pilot test, a larger and more quantitative field test process was designed to better determine the

optimal values for each variable. The variables were tested one at a time. Ten values of each variable were
tested, using the optimal value from the pilot testing, and creating a set of ten values that ranged above and
below it. A complex image of a turtle was used which included detailed lines, so that grading could include a
wide range of possibilities from very poor (low grade) to very good (high grade). After each drawing was made
by the robot, a photograph of the drawing was captured and compared to the original image that was input to

the code. The images were all converted to SVG before comparing them.

Turtle Image Used for Testing

15

Accurate Control of Joint-Based Robots

depth

This variable controls how high up from the paper
the pencil is, in other words, the z-coordinate with
the exception of when the pencil is being lifted off
the paper. It is a negative number because it is
below the center of the servo that is used as the
origin. The depth variable has two values that were
very similarly optimal. These are -7.75 and -7.35.
These two values must be tested again in the final
round to determine which produces the best grade.

delta_d

This variable is the amount added or subtracted from
depth to make the z coordinate proportional to the y
coordinate. So, the pencil would be lower when
farther from the origin and higher when closer. The
optimal value of delta_d is 1.5.

pick_up
This is the amount, in centimeters that is added to

the depth variable when picking up the pencil. The
optimal value of pick_up is 1.5.

16

Accurate Control of Joint-Based Robots

forward

This is the amount, in centimeters, that shifts the
paper up. If this were 0, the robot might get a point
too close to the origin and break. The optimal value of

forward is 8.5.

S

This variable is the target speed of the robot in
centimeters per second. The prediction was that
when s is larger, the robot draws faster but it is less
accurate. This is good for curves, but going too fast,
the robot arm slams down on the paper. Going slower
is better for lines. The optimal value for s appears to
be 17.0, but this might be an anomalous value.
Perhaps 14.0 is the optimal value. This will need to
be tested.

17

Accurate Control of Joint-Based Robots

delta_s

This variable is the amount added or subtracted
from speed to make the speed proportional to the y
coordinate. So, the pencil draws faster when farther
away from the origin and slower when closer. The

optimal value for delta_s is 2.75.

angle

Angle controls the angle at which the pencil touches

the paper. The optimal value for angle is 165.

dx

This variable determines how many points the robot

is told to draw, in points per centimeter. The optimal

value for dx is 2.6.

18

Accurate Control of Joint-Based Robots

19

Results

Python Algorithm

An algorithm was created using Python to make the robot draw. The flowchart of the algorithm
is represented above. Each box is a complex step in the robot control. These pieces
encompass all of the major foundations of robotics: kinematics, dynamics, mechanisms and
actuation, sensing and actuation, motion planning, motion control, and force control (Siciliano,
Bruno, and Oussama Khatib 2016).

Important Variables to Optimize

There are 8 variables that are essential to controlling the robotic arm. One variable (delta_a)
was determined not to be useful. The variables that control the coarse mechanics are depth,
pick_up, forward, s, angle, and dx. The variables delta_d and delta_s make depth and s
proportional to the y coordinate. They are not as essential, because the robot movement would
still be able to draw without these variables, but these two variables refine the movements.

The optimal values of the variables were determined through two phases of testing,
summarized below. Final testing of the robot was carried out with the field test optimal values of

the variables.

20

Accurate Control of Joint-Based Robots

The two testing phases provided the following sets of optimal variable values.

Variable Pilot Test Field Test Variable Pilot Test Field Test
depth -7.5 -7.750r-7.35 s 15 17 or 14
delta_d 1.0 1.5 delta_s 2.5 2.75
pick_up 1.45 1.5 angle 160 165
forward 10 8.5 dx 3.0 26

The four combinations were then tested, and the best combination is depth = -7.75 and s = 17.

Quantitative Grading of Drawings

The pilot process used human perspective to grade the drawings. The field test process
improved upon this by creating a quantitative measure of how good the robot’s drawings were
compared to the original drawing input to the algorithm. Code was adapted from Doxygen
(2017). There were several steps in grading an image. The inputs are the SVG that the drawing
was made after, and a picture of the drawing made by the robotic arm. First, before any images
are input to compare the initial image to, several reference points are plotted on the SVG
image. The quantity of these points is a. Then, once the drawing is input, the grading algorithm
connects several points to the initial image. The amount of these connections is b. Some of
these connections will not be completely correct. Next, of these connections, the computer
finds which connections are true connections. The true connections are c. The total grade is

calculated with these points weighted:
5% => & 95% => %

The highest possible grade is 100 and the lowest is 0. If the drawing is too light and difficult to
see, the grader automatically gives it O for its grade.

Accurate Control of Joint-Based Robots

Results of Optimization

Below are shown drawings of the turtle with three sets of parameters: non-optimal, pilot test values, and field test values.

Original SVG image of turtle

Turtle drawn with non-optimal values

Turtle drawn with pilot test values Turtle drawn with field test values
depth delta_d | pick_up forward s delta_s angle dx
Non-optimal -7.5 2.0 1.45 10 15 25 180 5.0
Pilot test -7.5 1.0 1.45 10 15 2.5 160 3.0
Field test -7.75 1.5 1.5 8.5 17 2.75 165 2.6

21

‘Beauty is the
summation of parts
working together in
such a way that
nothing needs fo be
added, taken away,
or altered.”

Carlotti, Italian
Painter

22

Accurate Control of Joint-Based Robots

How the Code Works

The algorithm created to control the robotic arm has several pieces of code, each with its own

specific purpose. For example, one code might control the servos while another calculates the
inverse kinematics. Then, these pieces are all imported into one algorithm, called Robot. The
code has several parts that work together, called functions, that are detailed below.

__init__

This is a part of the code that takes all the inputs and allows the use of them in the other
functions. Here are the inputs and their meanings:

* servos: a list of all the servos

* depth: the z-coordinate in centimeters

» delta_d: the amount added or subtracted from depth to make the z coordinate proportional
to the y coordinate

» pick_up: the cm added to depth when picking up the pencil
« forward: the amount in centimeters that viewport moves up
* speed: the speed at which the robot draws in cm/sec

» delta_s: the amount added or subtracted from speed to make the speed proportional to the
y coordinate

* angle: the angle at which the robot draws in degrees
* lengths: the four lengths of the robot in centimeters

* viewport: the size of the paper that the robot is drawing on

wait
This function allows the robot to wait until it is done moving before it goes to another spot,

rather than go to every spot as fast as the robot possibly can because it is constantly being fed

commands to got to a certain point. This would most likely burn out the servos.

Accurate Control of Joint-Based Robots

get_speed

This sets the speed proportional to how far away the point of the pencil is from the origin, which
is the middle of the robot. If the tip of the pencil is far away, the robot will go faster by s +
delta_s, but if it is closer, it will go at a speed of s - delta_s. This function is not absolutely
necessary for drawing, but it greatly improves the quality of the drawing.

home

This function homes the robot, meaning that all of the robot’s angles are set to 0. This is used

just before the drawing process, just to calibrate all the servos.

distance

This function has no direct purpose except to calculate the distance between two points in 3D
for the use of other functions such as get _time. This is the formula to find the distance between

two points with coordinates (x ;,y ,,z;) and (x,,y,,2,):

\/(Xfxl)2+(yfy1)2+(z27z1)2

get_time
This uses the equation, distance = speed * time, to solve for the amount of time it will take to

get from one point to another. So, this takes in two points and the speed at which the robot
should be going, and then finds the amount of time it will take.

get_depth

This sets the depth, or the z-coordinate, which becomes proportional to the distance from the
robot in this code, using delta_d and depth. If the tip of the robot is far away, the robot will go
higher by depth + delta_d, but if it is closer, it will go lower, depth - delta_d. This function is not
absolutely necessary for drawing, but it greatly improves the quality of the drawing.

move_to_point

This is one of the two most important functions. This function takes in the coordinates of one

23

Accurate Control of Joint-Based Robots

point as (X, y, z) and also phi, which is the angle at which the pencil touches the paper. First,
the computer uses get_time to find the amount of time it will take to move the tip of the pencil
from the current point to the point that was input. The computer already knows what the current
point is because every time that the computer tells the servos to move, it resets the current
point, including when using the home function. Next, the computer uses solve_ik, a class in
another piece of code, to solve the inverse kinematics, or the combination of angles that would
move the robot to a desired point, in this case the (x, y, z) that was input. There are 4 possible
solutions, but the computer chooses the first one because the other solutions would be options
that the servos simply cannot do, for example turning around and drawing from below. Next,
the code sets the target for all of the servos, using the angles calculated earlier and uses the
already computed time to bring them all there at the same time, to be efficient, but also not

leave any unnecessary marks on the paper. Finally, the code resets the current point.

draw

The other important function is draw, which uses the points made from the SVG image input
and go_to_point to tell the robotic arm where to go. First, the computer uses a piece of code
that was imported into this one, called Drawing to take the SVG image and turn it into points.
The way Drawing works is it turns the image into angles, then lines, and finally a certain
amount of points depending on dx (points/cm). The image has to be SVG (Scalable Vector
Graphics) because it is made out of lines, which are easy to identify. When the robot has to
pick up the pencil and move to another line, the code puts in a NaN (not a number). After
finding the points, the robot goes through a for loop in which every one of those points goes
through the move_to_point function and gets drawn, every time resetting the current point.
When the for loop gets to a NaN, it picks the arm up by pick_up and moves to the next point in
the list. Once it gets through the whole loop, the robot has made a drawing that will hopefully
look like the SVG input!

24

Accurate Control of Joint-Based Robots

Next Steps

In the future, the robot can be improved by using two servos for the top joint to improve

accuracy. In addition, there can be shorter extension wires because the wires often get in the

way of the drawing process and decrease drawing quality.

More granular and multidimensional testing could be performed around the current optimal

parameter values to make the drawings even more accurate.

+ For example, a variable could be held at a certain value that was optimal in a test, and
values of a second variable could be tested. Then the first variable could be increased or
decreased slightly, and the second variable tests could be run again to find out if there is a
better combination of the two variables than testing the variables separately.

* Code could be developed to randomly select some combinations of variables, to try to
figure out other combinations to test. There are six variables that are all important, which
are depth, pick_up, forward, s, angle, and dx. Instead of testing a variable and then
setting it to its optimum value before testing the next variable, the three best values of the
first variable could be run with all of the values of the second one to see if it makes a
difference. Also, a different order of testing the variables could be tried.

The servos used in this robotic arm had a precision level of 1 degree. This limited the accuracy
because the robot could not be made to draw more precisely. More precise servos would
increase accuracy, but they also increase cost. A next step could be to test more precise

servos and then do a cost-benefit analysis.

Stronger material for the robot would improve accuracy because the robot would be less
wobbly, but would weigh more. But, if something were to break, it would be more costly to
repair the damage. Again, a cost-benefit analysis could be done if a second robot was built

from stronger material.

25

Accurate Control of Joint-Based Robots

26

Conclusions

In his Foreword to the Springer Handbook of Robotics, Bernard Roth, who is a Professor of
Mechanical Engineering at Stanford University, says that there is a “modern trend of carefully
detailed mechanical and electronic design, optimized software, and complete system
integration” that has become the “norm to this day” and that “this combination represents the
hallmark of most highly regarded robotic devices” (Siciliano, Bruno, and Oussama Khatib,
2016). Software is used for control of motion and control of interaction forces between the robot

and its environment.

It is possible to build an inexpensive robot whose accuracy can be improved. However, this

cost effectiveness creates a lot of barriers because low-cost servos are highly inaccurate.

There is probably a trade off between better code and more precise servos. A lot of research
literature focuses on improving accuracy by innovations in hardware. This project has shown
that accurate control of joint-based robots can also be optimized by improving software.
Specifically, variables can be introduced, and then optimized, which will improve the robot’s
accuracy.

Accurate Control of Joint-Based Robots

Acknowledgments

The author wishes to thank the following people who have supported her during the process of

doing this project.

Lujing Cen Laurie Ferhani

Mentor Middle School Science
Teacher

Computer Science Major

Massachusetts Institute of Amigos K-8 School

Technology Cambridge, MA

Hannah Sevian

Mother

Chemistry Professor

University of Massachusetts
Boston

27

Accurate Control of Joint-Based Robots

References

28

1.

Clothier, Kurt E., and Ying Shang. "A geometric approach for robotic arm kinematics
with hardware design, electrical design, and implementation." Journal of Robotics 2010
(2010).

Doxygen. "Feature Matching." OpenCV: Feature Matching. Doxygen, n.d. Web. 28
May 2017.

Edan, Yael, et al. "A three-dimensional statistical framework for performance
measurement of robotic systems." Robotics and Computer-Integrated Manufacturing
14.4 (1998): 307-315.

Hochberg, Leigh R., et al. "Reach and grasp by people with tetraplegia using a neurally
controlled robotic arm." Nature 485.7398 (2012): 372-375.

Jeong, Younkoo, et al. "A 7 DOF wearable robotic arm using pneumatic actuators."
Proceedings of the 32nd ISR (International Symposium on Robotics). Vol. 19. 2001.
Kostic, Dragan, et al. "Modeling and identification for high-performance robot control:
An RRR-robotic arm case study." IEEE Transactions on Control Systems Technology
12.6 (2004): 904-919.

Siciliano, Bruno, and Oussama Khatib, eds. Springer handbook of robotics. Springer,
2016.

Taylor, Russell, et al. "A steady-hand robotic system for microsurgical augmentation."
The International Journal of Robotics Research 18.12 (1999): 1201-1210.

